从一个什么都不懂的小白,到现在字节跳动的数据分析师,我用了大概1年的时间,在这里想给大家分享一下我的转行经历,希望能有一些帮助。
先说一下个人背景,本科是工科相关,非计算机非统计学,硕士是金融相关,基本也算是和数据分析没什么关系,毕业之前有过迷茫,因为自己其实也不知道到底适不适合金融行业,而且上学的时候没有认真搞过什么银行、券商的实习,基本毕业就是凉凉的节奏。所幸毕业前,在和友人的一次偶然交谈中,得知了数据分析这个职业,发现自己似乎比较感兴趣,当时也没有其他路可以选,就决定孤注一掷,allin数据分析,在此也感谢一下那位友人,人生确实是在于你能否做对几个关键的选择。
决定转型后,先是到网上恶补了一下数据分析师这个行业的整体情况,现在数据分析师其实很杂,不同企业对数据分析师有不同的定位,但大概总结一下的话,是可以分为两种:
技术型分析师更接近于数据挖掘工程师、算法工程师、大数据工程师这种概念,一般来说是需要比较好的数据结构知识和算法知识,对于非计算机专业的同学,转型会有一定难度。其实一开始我考虑的是这种分析师,但在后面刷了几百道leetcode题之后,决定放弃这条路(太难了)。
第二种就是偏业务型的数据分析师,也是市面上岗位最多的数据分析师,这种分析师的门槛会相对比较低一点,但做不好的话,很有可能就变成报表分析师,提数分析师。不过毕竟门槛还是比较低的,对于想转型的同学,业务型数据分析师会更加友好一些
明确了转型方向后,对于从零转型的同学来说,会有两个比较迫切的问题,我该从什么地方下手和我简历上啥都没有怎么办。对于第一个问题,我的选择是先列了一个我认为的业务型数据分析师所需要的能力矩阵,再针对性准备,简单来说主要包括这几个层面:
Excel、SQL、python是数据分析师必知必会的3个基本工具,下面我们一个个来看:
对于Excel的学习,如果你的意向的岗位不是那种纯excel的数据分析师岗位的话,建议大家不需要花费太多时间在excel上,我个人是几乎没花什么时间在excel上,主要的是要掌握vlookup、透视表和一些常用图表,不会的函数就直接百度。
核心!sql一定要熟,笔试基本必考,面试时候大概率让你手撕sql,写不出的话很容易凉凉。对于sql的学习,完全没有基础的同学可以先看这本《sql必知必会》,了解sql的一些基本知识,增改删查,主要看查询的部分。
看完这本书后你对sql的语法应该有了一些基本的了解,但如果不多练习的话,面试手写sql的那种场景,脑子很容易宕机,在这里强推几个练习网站。
牛客网在线SQL编程,强力推荐,最近牛客又更新了一波题库,包括基础题目、进阶题目,还有大厂SQL笔试真题!可以自动批改正误,纯中文,还有题目讲解,这个题库我刷了2遍,里面题很多一次刷不完,大家点链接进去后记得注册登陆,可以保留历史刷题记录,刷完之后基本的面试SQL题基本都能应对,强推!
2.Leetcode
也是一个比较知名的网站了,学计算机的可能都知道。英文的代码在线练习网站,但今天看了一下发现有中文了,但是很多题目都变成了收费题目,牛客网刷完感觉不够的话可以再来这看看
相对上面两个工具,python的学习难度会稍微大一些。python能干很多事,对于数据分析师来说,主要应掌握基础语法和数据科学的模块,主要包括pandasnumpy和机器学习库sklearn等,有同学可能会问业务型数据分析师也需要会算法吗?答案是虽然不是必须项,但是加分项,尤其是在从零转型情况下,是增加自己份量的一个筹码。
对于英文比较好的同学,也可以去coursera上面看密歇根大学的课程,这两门课程学完相信你对python就有基本的了解了,但和sql一样,还是需要多练多运用才能真正融汇贯通。
入门的话可以先从泰坦尼克或者房价预测入手,但放到简历上的话,建议
标签: 数据分析、 互联网、 职场、本文地址: https://yihaiquanyi.com/article/74e5d0d190a8632973c4.html
上一篇:制造业质量管理数字化实施指南试行制造业质...